Solution estimates for linear differential equations with delay
نویسندگان
چکیده
منابع مشابه
Algorithms for Linear Stochastic Delay Differential Equations
Models consisting of linear, N-dimensional stochastic delay differential equations present a particular set of challenges for numerical simulation. While the user often seeks the probability density function of the solution, currently available methods rely on Monte Carlo sampling to generate sample paths, from which a density function must be estimated statistically. In the present work, we de...
متن کاملNumerical Solution of Delay Differential Equations
After some introductory examples, this chapter considers some of the ways that delay differential equations (DDEs) differ from ordinary differential equations (ODEs). It then discusses numerical methods for DDEs and in particular, how the Runge–Kutta methods that are so popular for ODEs can be extended to DDEs. The treatment of these topics is complete, but it is necessarily brief, so it would ...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملChebyshev Collocation for Linear, Periodic Ordinary and Delay Differential Equations: a Posteriori Estimates
Abstract. We present a Chebyshev collocation method for linear ODE and DDE problems. Theorem 3 in section 3 gives an a posteriori estimate for the accuracy of the approximate solution of a scalar ODE initial value problem. Examples of the success of the estimate are given. For linear, periodic DDEs with integer delays we define and discuss the monodromy operator U in section 4. Our main goal is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2020
ISSN: 0096-3003
DOI: 10.1016/j.amc.2019.124962